Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cancer Sci ; 115(3): 836-846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38273817

RESUMO

Matrix stiffness potently promotes the malignant phenotype in various biological contexts. Therefore, identification of gene expression to participate in mechanical force signals transduced into downstream biochemical signaling will contribute substantially to the advances in nasopharyngeal carcinoma (NPC) treatment. In the present study, we detected that cortactin (CTTN) played an indispensable role in matrix stiffness-induced cell migration, invasion, and invadopodia formation. Advances in cancer research have highlighted that dysregulated alternative splicing contributes to cancer progression as an oncogenic driver. However, whether WT-CTTN or splice variants (SV1-CTTN or SV2-CTTN) regulate matrix stiffness-induced malignant phenotype is largely unknown. We proved that alteration of WT-CTTN expression modulated matrix stiffness-induced cell migration, invasion, and invadopodia formation. Considering that splicing factors might drive cancer progression through positive feedback loops, we analyzed and showed how the splicing factor PTBP2 and TIA1 modulated the production of WT-CTTN. Moreover, we determined that high stiffness activated PTBP2 expression. Taken together, our findings showed that the PTBP2-WT-CTTN level increases upon stiffening and then promotes cell migration, invasion, and invadopodia formation in NPC.


Assuntos
Neoplasias Nasofaríngeas , Podossomos , Humanos , Cortactina/genética , Cortactina/metabolismo , Carcinoma Nasofaríngeo/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Nasofaríngeas/genética , Invasividade Neoplásica
2.
Cell Death Discov ; 10(1): 43, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263362

RESUMO

N6-methyladenosine (m6A) is an RNA modification that can be removed by demethylases [fat mass and obesity-associated protein (FTO) and AlkB homolog 5 (ALKBH5)], which regulate gene expression and cell function. We show that m6A levels and m6A demethylase levels are altered in nasopharyngeal carcinoma (NPC) tissues vs. normal tissues. High FTO and ALKBH5 predict a poor prognosis in NPC patients. Silencing FTO and ALKBH5 inhibited the malignant behavior of patient-derived NPC cells in a short time. However, as time progressed, the inhibitory effect of FTO or ALKBH5 was weakened, and the cosilencing of FTO and ALKBH5 maintained a better inhibitory effect. Combined transcriptome and m6A-seq analysis revealed a downstream target gene that was jointly regulated by FTO and ALKBH5 in NPC, and ARHGAP35 was chosen to do further study. The synergistic silencing of FTO and ALKBH5 increased the methylation level on the mRNA CDS of a new transcription factor (ARHGAP35) and positively regulate the protein coding capacity and mRNA stability of ARHGAP35, thus leading to increased expression of ARHGAP35 and inhibition of the malignant phenotype of tumor cells. Our study revealed that the growth and metastasis of NPC can be stably inhibited through synergistic silencing of the demethylases FTO and ALKBH5, which play a positive role in the treatment of NPC by regulating the downstream transcript ARHGAP35 and increasing its m6A level.

3.
Cell Oncol (Dordr) ; 47(1): 283-301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37782406

RESUMO

PURPOSE: Nasopharyngeal carcinoma (NPC) has characteristics of high invasion and early metastasis. Most NPC patients present with locoregionally advanced illness when first diagnosed. Therefore, it is urgent to discover NPC biomarkers. Fibroblast growth Factor 19 (FGF19) plays a role in various physiological or pathological processes, including cancer. In this research, we discovered the importance of FGF19 in NPC, and clarified its role in tumour angiogenesis. METHODS: Western blotting, immunohistochemistry and ELISA were used to investigate FGF19 expression in NPC. Then we took CCK8, colony formation, Transwell and wound healing assays to identify the influence of FGF19 on NPC malignant behaviours. The proliferative and metastatic capacity of FGF19 were evaluated in nude mice and zebrafish. The role of FGF19 in angiogenesis was investigated by tube formation and Matrigel plug angiogenesis assays. We then evaluated the variation in Annexin A2(ANXA2) levels with the treatment of FGF19. Lastly, co-immunoprecipitation and ubiquitination assays were performed to identify the mechanisms involved. RESULTS: FGF19 levels were elevated in tissues and serum of NPC patients and were associated with poor clinical stages. High expression of FGF19 promoted NPC malignant behaviours. In particular, FGF19 expression was correlated with microvessel density in tissues and NPC-derived FGF19 could accelerate angiogenesis in vitro and in vivo. Mechanistically, FGF19 influenced ANXA2 expression to promote angiogenesis. Moreover, tripartite motif-containing 21(TRIM21) interacted with ANXA2 and was responsible for ANXA2 ubiquitination. CONCLUSION: FGF19 promoted NPC angiogenesis by inhibiting TRIM21-mediated ANXA2 ubiquitination. It may serve as a noninvasive biomarker for NPC and provides new insights for therapy.


Assuntos
Anexina A2 , Fatores de Crescimento de Fibroblastos , Neoplasias Nasofaríngeas , Ribonucleoproteínas , Animais , Humanos , Camundongos , Anexina A2/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Peixe-Zebra/metabolismo , Ribonucleoproteínas/metabolismo
4.
Cell Death Discov ; 9(1): 323, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644041

RESUMO

Distant metastasis is currently the main factor affecting the prognosis of nasopharyngeal carcinoma (NPC), and understanding the mechanisms of metastasis and identifying reliable therapeutic targets are critical for improving prognosis and achieving clinical translation. Macrophages, as important immune cells in the tumor microenvironment (TME), have been shown to regulate metastasis. And extracellular vesicles (EVs) secreted by stromal cells and tumor cells play the important role in intercellular communication in the tumor microenvironment. However, the role of NPC-EVs on macrophages and their function in regulating macrophages to affect metastasis has not been fully clarified. In this study, we report that NPC-EVs can be uptake by macrophages and alter macrophage polarization, for the first time, we identified the genes implicated in these regulatory functions: SCARB1, HAAO, and CYP1B1. Moreover, we found that SCARB1 was positively associated with metastasis and poor prognosis of NPC. Interestingly, we found that SCARB1-rich EVs promoted M1 macrophages ferroptosis to decrease M1 macrophages infiltration by upregulating the HAAO level while decreasing phagocytosis of M2 macrophages by upregulating the CYP1B1 level. Finally, we identified the SCARB1-binding gene KLF9, which is involved in the transcription of HAAO and CYP1B1. Our findings showed that SCARB1-EVs promoted metastasis by co-regulating M1 and M2 macrophage function. The related mechanism will provide a new therapeutic strategy to help patients with NPC improve their prognosis.

5.
Environ Res ; 231(Pt 3): 116252, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245573

RESUMO

In this study, a highly efficient phosphate adsorbent (MBC/Mg-La) based on magnetic biochar was successfully synthesized through Mg-La modification. The phosphate adsorption capacity of biochar was significantly enhanced after Mg-La modification. The adsorbent exhibited an excellent phosphate adsorption performance, particularly for treating low-concentration phosphate wastewater. Within a wide pH range, the adsorbent maintained a stable phosphate adsorption capacity. Furthermore, it showed a high adsorption selectivity for phosphate. Therefore, given the excellent phosphate adsorption performance, the adsorbent could effectively inhibit algae growth by removing phosphate from water. Furthermore, the adsorbent after phosphate adsorption can be easily recycled through magnetic separation, which can serve as a phosphorus fertilizer to promote the growth of Lolium perenne L.


Assuntos
Herbicidas , Poluentes Químicos da Água , Fosfatos , Adsorção , Fertilizantes , Fenômenos Magnéticos , Cinética
6.
Cell Oncol (Dordr) ; 46(4): 1031-1048, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36952101

RESUMO

OBJECTIVE: Evidence suggests that calcium release from the endoplasmic reticulum (ER) can be induced to cause calcium overload, which in turn can trigger mitochondrial-dependent apoptosis. Dysregulation of systemic calcium homeostasis and changing levels of calcium-binding proteins have been shown to be associated with the malignant behavior of tumors. However, the precise molecular mechanism underlying Nasopharyngeal carcinoma (NPC) remains uncertain. METHODS: Reticulocalbin (RCN2) expression in NPC was assessed using GEO database, western blot analysis and qRT-PCR. Apoptosis was assessed using flow cytometric analysis and the expression levels of apoptosis-related proteins were determined using western blot analysis. Intracellular calcium ion concentrations were measured using fluorescence imaging. The findings from these analyses were validated in vitro using nude mice models. Luciferase and ChIP assays were used to measure transcriptional regulation. Clinical significance was evaluated using tissue microarray analysis (n=150). RESULTS: Our results showed that RCN2 promotes malignancy by causing Ca2+ flow imbalance, which leads to the initiation of the stress-mediated mitochondrial apoptosis pathway. We demonstrate that calreticulin (CALR) resides primarily in the endoplasmic reticulum and interacts with RCN2. Moreover, the transcription factors YY1 and homeobox protein goosecoid (GSC) both contribute to the initiation of RCN2 transcription by directly binding to the predicted promoter region of RCN2. Finally, high expression of RCN2 combined with high expression of GSC and YY1 may serve as an important clinical biomarker of poor prognosis in patients with NPC. CONCLUSION: YY1 and GSC are upstream regulators of RCN2, involved in mitochondrial calcium overload and stress-induced mitochondrial apoptosis. Thus, they can play significant role in the malignant development of NPCs.


Assuntos
Cálcio , Neoplasias Nasofaríngeas , Animais , Camundongos , Carcinoma Nasofaríngeo/genética , Cálcio/metabolismo , Camundongos Nus , Proteínas de Ligação ao Cálcio/metabolismo , Apoptose/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
7.
Cell Death Discov ; 9(1): 2, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609569

RESUMO

Reliable detection of circulating small extracellular vesicles (SEVs) and their miRNA cargo has been needed to develop potential specific non-invasive diagnostic and therapeutic marker for cancer metastasis. Here, we detected miR-6750, the precise molecular function of which was largely unknown, was significantly enriched in serum-SEVs from normal volunteers vs. patients with nasopharyngeal carcinoma (NPC). And we determined that miR-6750-SEVs attenuated NPC metastasis. Subsequently, miR-6750-SEVs was proven to inhibit angiogenesis and activate macrophage toward to M1 phenotype to inhibit pre-metastatic niche formation. After analyzing the expression level of miR-6750 in NPC cells, HUVECs and macrophage, we found that once miR-6750 level in NPC cells was close to or higher than normal nasopharyngeal epithelial cells (NP69), miR-6750-SEVs would be transferred from NPC cells to macrophage and then to HUVECs to modulate metastatic niche. Moreover, in vitro assays and BALB/c mouse tumor models revealed that miR-6750 directly targeted mannose 6-phosphate receptor (M6PR). Taken together, our findings revealed that miR-6750-M6PR axis can mediate NPC metastasis by remodeling tumor microenvironment (TME) via SEVs, which give novel sights to pathogenesis of NPC.

8.
Allergy Asthma Immunol Res ; 14(6): 604-652, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36426395

RESUMO

In the last few decades, there has been a progressive increase in the prevalence of allergic rhinitis (AR) in China, where it now affects approximately 250 million people. AR prevention and treatment include allergen avoidance, pharmacotherapy, allergen immunotherapy (AIT), and patient education, among which AIT is the only curative intervention. AIT targets the disease etiology and may potentially modify the immune system as well as induce allergen-specific immune tolerance in patients with AR. In 2017, a team of experts from the Chinese Society of Allergy (CSA) and the Chinese Allergic Rhinitis Collaborative Research Group (C2AR2G) produced the first English version of Chinese AIT guidelines for AR. Since then, there has been considerable progress in basic research of and clinical practice for AIT, especially regarding the role of follicular regulatory T (TFR) cells in the pathogenesis of AR and the use of allergen-specific immunoglobulin E (sIgE) in nasal secretions for the diagnosis of AR. Additionally, potential biomarkers, including TFR cells, sIgG4, and sIgE, have been used to monitor the incidence and progression of AR. Moreover, there has been a novel understanding of AIT during the coronavirus disease 2019 pandemic. Hence, there was an urgent need to update the AIT guideline for AR by a team of experts from CSA and C2AR2G. This document aims to serve as professional reference material on AIT for AR treatment in China, thus improving the development of AIT across the world.

9.
Exp Cell Res ; 421(2): 113403, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36336028

RESUMO

Vascular mimicry (VM) is defined as a vascular channel-like structure composed of tumor cells that correlates with the growth of cancer cells by providing blood circulation. However, whether VM can be formed in dormant cancer cells remains unclear. Our previous research revealed that polyploid giant cancer cells (PGCCs) are specific dormant cells related to the poor prognosis of head and neck cancer. Here, we demonstrated that EBV could promote VM formation by PGCCs in vivo and in vitro. Furthermore, we revealed that the activation of the ERK pathway partly mediated by LMP2A is responsible for stemness, and the acquisition of the stemness phenotype is crucial to the malignant biological behavior of PGCCs. The epithelial-to-mesenchymal transition (EMT) process plays a considerable role in PGCCs, and EMT progression is vital for EBV-positive PGCCs to form VM. This is the first study to reveal that EBV creates plasticity in PGCC-VM and provide a new strategy for targeted anti-tumor therapy.


Assuntos
Herpesvirus Humano 4 , Neoplasias , Humanos , Herpesvirus Humano 4/genética , Transição Epitelial-Mesenquimal/genética , Células Gigantes/metabolismo , Linhagem Celular Tumoral , Neovascularização Patológica/metabolismo , Neoplasias/patologia
10.
Cancers (Basel) ; 14(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36139685

RESUMO

Obesity is a prominent risk factor for certain types of tumor progression. Adipocytes within tumor stroma contribute to reshaping tumor microenvironment (TME) and the metabolism and metastasis of tumors through the production of cytokines and adipokines. However, the crosstalk between adipocytes and tumor cells remains a major gap in this field. Known as a subtype of selective autophagy, lipophagy is thought to contribute to lipid metabolism by breaking down intracellular lipid droplets (LDs) and generating free fatty acids (FAs). The metastatic potential of cancer cells closely correlates with the lipid degradation mechanisms, which are required for energy generation, signal transduction, and biosynthesis of membranes. Here, we discuss the recent advance in the understanding of lipophagy with tumor lipid metabolism and review current studies on the roles of lipoghagy in the metastasis of certain human malignancies. Additionally, the novel candidate drugs targeting lipophagy are integrated for effective treatment strategies.

11.
Oncol Rep ; 48(2)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35762326

RESUMO

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that, for the cell migration assay data shown in Fig. 4B, the data panels representing the 'miR­NC inhibitor' and 'hypoxia' experiments appeared to contain overlapping sections, such that they may have been derived from the same original source. The authors have re­examined their original data, and realize that Fig. 4B was assembled incorrectly. A corrected version of Fig. 4, showing in Fig. 4B the data from one of the repeated cell migration assay experiments, is shown on the next page. The authors confirm that these data continue to support the main conclusions presented in their paper, and are grateful to the Editor of Oncology Reports for allowing them this opportunity to publish this Corrigendum. They also apologize to the readership for any inconvenience caused. [Oncology Reports 34: 1943­1952, 2015; DOI: 10.3892/or.2015.4195].

12.
J Extracell Vesicles ; 11(5): e12221, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35524442

RESUMO

Tumour-associated angiogenesis plays a critical role in metastasis, the main cause of malignancy-related death. Extracellular vesicles (EVs) can regulate angiogenesis to participate in tumour metastasis. Our previous study showed that EVs rich in HAX1 are associated with in metastasis of nasopharyngeal carcinoma (NPC). However, the mechanism by which HAX1 of EVs promotes metastasis and angiogenesis is unclear. In this study, we demonstrated that EVs rich in HAX1 promote angiogenesis phenotype by activating the FAK pathway in endothelial cells (ECs) by increasing expression level of ITGB6. The expression level of HAX1 is markedly correlated with microvessel density (MVDs) in NPC and head and neck cancers based on an analysis of IHC. In addition to a series of in vitro cellular analyses, in vivo models revealed that HAX1 was correlated with migration and blood vessel formation of ECs, and metastasis of NPC. Using ribosome profiling, we found that HAX1 regulates the FAK pathway to influence microvessel formation and promote NPC metastasis by enhancing the translation efficiency of ITGB6. Our findings demonstrate that HAX1 can be used as an important biomarker for NPC metastasis, providing a novel basis for antiangiogenesis therapy in clinical settings.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Vesículas Extracelulares , Neoplasias Nasofaríngeas , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/metabolismo , Neovascularização Patológica/genética
13.
Cancer Lett ; 531: 14-26, 2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35092862

RESUMO

MicroRNAs (miRNAs) regulate gene expression to participate in carcinogenesis and tumor progression. Therefore, identification of a malignant phenotype associated with miRNAs and therapeutic targets will contribute substantially in improving nasopharyngeal carcinoma (NPC) treatment. In this study, we demonstrated that overexpression of let-7i-5p promotes the malignant phenotype by acting as an autophagy suppressor by targeting ATG10 and ATG16L1 in NPC. Expression levels of let-7i-5p were markedly increased in NPC and head and neck cancers based on an analysis of the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Using a cohort comprising 150 NPC tissues, we found that let-7i-5p was correlated with advanced stage, recurrence, metastasis, lymph node metastasis, and poor clinical outcomes. In addition to a series of in vitro cellular analyses, in vivo mouse tumor models revealed that let-7i-5p inhibits autophagy and promotes the malignant phenotype of NPC by targeting ATG10 and ATG16L1. Our findings demonstrate that let-7i-5p may represent a promising therapeutic target for NPC treatment.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , Animais , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Fenótipo
14.
Cancer Res ; 82(5): 846-858, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965934

RESUMO

Dormant cancer cells that survive anticancer therapy can lead to cancer recurrence and disseminated metastases that prove fatal in most cases. Recently, specific dormant polyploid giant cancer cells (PGCC) have drawn our attention because of their association with the clinical risk of nasopharyngeal carcinoma (NPC) recurrence, as demonstrated by previous clinical data. In this study, we report the biological properties of PGCC, including mitochondrial alterations, and reveal that autophagy is a critical mechanism of PGCC induction. Moreover, pharmacologic or genetic inhibition of autophagy greatly impaired PGCC formation, significantly suppressing metastasis and improving survival in a mouse model. Mechanistically, chemotherapeutic drugs partly damaged mitochondria, which then produced low ATP levels and activated autophagy via the AMPK-mTOR pathway to promote PGCC formation. Analysis of the transcriptional and epigenetic landscape of PGCC revealed overexpression of RIPK1, and the scaffolding function of RIPK1 was required for AMPK-mTOR pathway-induced PGCC survival. High numbers of PGCCs correlated with shorter recurrence time and worse survival outcomes in patients with NPC. Collectively, these findings suggest a therapeutic approach of targeting dormant PGCCs in cancer. SIGNIFICANCE: Pretreatment with an autophagy inhibitor before chemotherapy could prevent formation of therapy-induced dormant polyploid giant cancer cells, thereby reducing recurrence and metastasis of nasopharyngeal carcinoma.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias Nasofaríngeas , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia , Linhagem Celular Tumoral , Humanos , Camundongos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/metabolismo , Recidiva Local de Neoplasia , Poliploidia , Serina-Treonina Quinases TOR/metabolismo
15.
Laryngoscope Investig Otolaryngol ; 6(5): 1228-1234, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34667869

RESUMO

OBJECTIVES: We aimed to construct an induction system for polyploid giant cancer cells (PGCCs), as well as to investigate PGCC features and clinical significance. METHODS: A laryngeal neoplasm-PGCC induction system was constructed using paclitaxel liposomes (PTX). We used western blots to compare expression of epithelial-mesenchymal transition-related proteins, stem cell interrelated proteins, and cyclin-associated proteins. We then measured PGCC count in tissue samples of patients with laryngeal neoplasms and analyzed its relationship with prognosis. Statistical significance was determined using t-tests. RESULTS: PTX successfully induced PGCCs. Western blotting showed that CyclinB1, CDC25C, CDK1, E-cadherin, and EIF-4A expression decreased in PGCCs compared with normal cancer cells, whereas vimentin and CD133 expression increased. Number of PGCCs in laryngeal cancer tissues and overall survival time were inversely correlated (P < .05). CONCLUSIONS: PTX successfully induces PGCC formation in laryngeal carcinoma, which may be the cause of poor prognosis in patients with laryngeal cancer.Level of Evidence: 4.

16.
BMC Cancer ; 21(1): 1003, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34493236

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is one of the most common malignancies in head and neck. Platinum-based chemotherapy is an important treatment for NPC. However, the molecular mechanism of resistance to platinum drug remains unknown. Endoplasmic reticulum resident protein 44(ERp44), an unfolded protein response (UPR)-induced endoplasmic reticulum(ER) protein, is induced during ER stress. This research explored the mechanism of ERp44 in strengthening cisplatin resistance in NPC. METHODS: Western blot and immunohistochemistry were used to investigate the expression of ERp44 and Glucose-Regulated Protein 78(GRP78) in NPC. We took CCK8 to detect the role of ERp44 on cell chemosensitivity. Flow cytometric analysis and western blot were taken to analyze cell apoptosis. We performed differential centrifugation to isolate exosomes from serum or conditioned media of cells and analyzed the impact of exosomal ERp44 on cells cisplatin sensitivity. Finally, the results were confirmed in vivo. RESULTS: We found the increased expression of ERp44 and GRP78 in NPC and ERp44 was highly expressed in ER-stressed tissues. Cell proliferation was inhibited after cisplatin treatment when ERp44 was knocked down and ERp44 strengthened cisplatin resistance by influencing cell apoptosis and pyroptosis. Then we also collected exosomes and cell viability was increased after the addition of NPC-derived-exosomes with cisplatin treatment. More importantly, our results showed under ERS, NPC cells secreted exosomes containing ERp44 and could transfer them to adjacent cells to strengthen chemoresistance. CONCLUSION: Our data suggested that exosomal ERp44 derived from ER-stressed NPC cells took an inevitable role in NPC chemoresistance and might act as a treatment target.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Estresse do Retículo Endoplasmático , Exossomos/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Carcinoma Nasofaríngeo/tratamento farmacológico , Resposta a Proteínas não Dobradas , Animais , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Chaperona BiP do Retículo Endoplasmático , Exossomos/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Chaperonas Moleculares/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell Death Dis ; 12(6): 554, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050127

RESUMO

Distant metastasis accompanied by angiogenesis is the main cause of nasopharyngeal carcinoma (NPC)-related death. Nuclear exosomes (nEXOs) are potential tumour biomarkers. High mobility group box 3 (HMGB3), a nuclear protein, is known to be overexpressed in cancers. However, its role in NPC has not been elucidated. Here, we explore for the first time the function of nEXO HMGB3 in tumour angiogenesis involved in NPC metastasis using a series of in vitro experiments with NPC cell lines and clinical specimens and in vivo experiments with tumour xenograft zebrafish angiogenesis model. We found a high expression of HMGB3 in NPC, accompanied by the formation of micronuclei, to be associated with metastasis. Furthermore, the NPC-secreted HMGB3 expression was associated with tumour angiogenesis. Moreover, HMGB3-containing nEXOs, derived from the micronuclei of NPC cells, were ingested by the human umbilical vein endothelial cells (HUVECs), and accelerated angiogenesis in vitro and in vivo. Importantly, western blotting and flow cytometry analysis showed that circulating nEXO HMGB3 positively correlated with NPC metastasis. In summary, nEXO HMGB3 can be a significant biomarker of NPC metastasis and provide a novel basis for anti-angiogenesis therapy in clinical metastasis.


Assuntos
Exossomos/metabolismo , Proteína HMGB3/metabolismo , Carcinoma Nasofaríngeo/irrigação sanguínea , Neoplasias Nasofaríngeas/irrigação sanguínea , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Nus , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Metástase Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Regulação para Cima , Peixe-Zebra
18.
Neuropsychiatr Dis Treat ; 17: 1289-1297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33958870

RESUMO

PURPOSE: Dyslipidemia frequently occurs in schizophrenia patients treated with antipsychotic drugs (APDs), especially atypical APDs. Apolipoprotein A1 (ApoA1) plays a key role in lipid metabolism. The aim of this study was to investigate whether ApoA1 gene polymorphisms are associated with APD-induced dyslipidemia in schizophrenia patients. PATIENTS AND METHODS: A total of 1987 patients with schizophrenia were enrolled in this study. Serum lipid profiles were determined with a biochemistry analyzer. Genotyping for the rs5072 polymorphism of ApoA1 was performed with TaqMan assay. Logistic regression analysis was carried out to evaluate the relationship between ApoA1 gene polymorphisms and APD-induced dyslipidemia. The effects of drug classification (typical vs atypical APD) and drug regimen (monotherapy vs combination therapy) on serum lipid levels were also analyzed. RESULTS: A significant association was found between rs5072 and triglyceride (TG) levels in the recessive model of the logistic regression analysis (adjusted odds ratio [OR]=1.50, 95% confidence interval [CI]: 1.03, 2.17; P<0.05). TG level was significantly higher in patients treated with combination therapy (1.03 (0.71, 1.51) mmol/l) compared to monotherapy (0.93 (0.67, 1.43) mmol/l) and was also associated with sex. There were significant differences in TG levels among the three genotypes of ApoA1 rs5072 (GG, GA, and AA) in the whole study population and in patients treated with atypical APDs. CONCLUSION: The ApoA1 rs5072 variant is associated with dysregulated TG metabolism in schizophrenia patients treated with APDs, which may increase susceptibility to dyslipidemia.

19.
J Transl Med ; 19(1): 77, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593371

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is one of the most common malignancy in head and neck. With the development of treatments, the prognosis has improved these years, but metastasis is still the main cause of treatment failure. The endoplasmic reticulum (ER) resident protein 44 is a UPR-induced ER protein of the protein disulphide isomerase (PDI) family. This study investigated the role of ERp44 in NPC progression. METHODS: Firstly, immunohistochemistry, western blot and qRT-PCR were used to investigate the expression of ERp44 in NPC samples and cell lines. We analyzed 44 NPC samples for ERp44 expression and investigated the association between its expression level with clinicopathologic parameters. Then we took CCK8, Transwell migration assay and used the zebrafish model to access the role of ERp44 on the malignant phenotype in NPC cells. Secondly, we used co-IP to gain the proteins that interact with ERp44 and took proteomic analysis. Furthermore, we successfully constructed the mutant variants of ERp44 and found the interaction domain with ATP citrate lyase(ACLY). Lastly, we subcutaneously injected NPC cells into nude mice and took immunohistochemistry to exam the expression of ACLY and ERp44. Then we used western blot to detect the expression level of epithelial-mesenchymal transition (EMT) markers. RESULTS: In the present study, we found ERp44 was elevated in NPC tissues and correlated with clinical stages and survive state of the patients. In vitro, the downregulation of ERp44 in NPC cells (CNE2, 5-8F) could suppress cells proliferation and migration. After that, we recognized that ACLY might be a potential target that could interact with ERp44. We further constructed the mutant variants of ERp44 and found the interaction domain with ACLY. The promotion of ERp44 on cell migration could be inhibited when ACLY was knocked down. More importantly, we also observed that the interaction of ERp44 with ACLY, especially the thioredoxin region in ERp44 play a vital role in regulating EMT. Lastly, we found ERp44 was positively correlated with the expression of ACLY and could promote NPC cells growth in nude mice. CONCLUSION: Our data indicated that ERp44 participates in promoting NPC progression through the interaction with ACLY and regulation of EMT.


Assuntos
ATP Citrato (pro-S)-Liase , Neoplasias Nasofaríngeas , Animais , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana , Camundongos , Camundongos Nus , Chaperonas Moleculares , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Fenótipo , Proteômica , Peixe-Zebra
20.
Cancer Sci ; 112(4): 1457-1470, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33511729

RESUMO

Resident adipocytes under a hypoxic tumor microenvironment exert an increasingly important role in cell growth, proliferation, and invasion in cancers. However, the communication between adipocytes and cancer cells during nasopharyngeal carcinoma (NPC) progression is poorly understood. Here, we demonstrate that hypoxic adipocyte-derived exosomes are key information carriers that transfer low expression of miR-433-3p into NPC cells. In addition, luciferase reporter assays detected that hypoxia inducible factor-1α (HIF-1α) induced miR-433-3p transcription through five binding sites at its promoter region. Concordantly, the low expression of miR-433-3p promoted proliferation, migration, and lipid accumulation in NPC cells via targeting stearoyl-CoA desaturase 1 (SCD1) are suggested by functional studies. Consistent with these findings, in tumor-bearing mice, NPC cells with low HIF-1α expression, high miR-433-3p expression, and low SCD1 expression were equally endowed with remarkably reduced potential of tumorigenesis. Collectively, our study highlights the critical role of the HIF-1α-miR-433-3p-SCD1 axis in NPC progression, which can serve as a mechanism-based potential therapeutic approach.


Assuntos
Adipócitos/patologia , Regulação para Baixo/genética , Exossomos/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Estearoil-CoA Dessaturase/genética , Animais , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Hipóxia/genética , Hipóxia/patologia , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...